Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

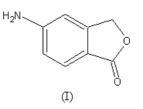
Hemmige S. Yathirajan,^a Basavegowda Nagaraj,^a Santhosh L. Gaonkar,^a Rajenahally S. Narasegowda,^a Basappa Prabhuswamy^a and Michael Bolte^b*

^aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and ^bInstitut für Anorganische Chemie, J. W. Goethe-Universität Frankfurt, Marie-Curie-Straße 11, 60439 Frankfurt/Main, Germany

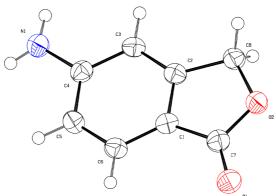
Correspondence e-mail: bolte@chemie.uni-frankfurt.de

Key indicators

Single-crystal X-ray study T = 173 K Mean σ (C–C) = 0.002 Å R factor = 0.026 wR factor = 0.067 Data-to-parameter ratio = 7.3


For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

5-Amino-3*H*-isobenzofuran-1-one (5-aminophthalide)


The title compound, $C_8H_7NO_2$, serves as an intermediate for the synthesis of citalopram. The packing of the planar molecules is stabilized by $N-H\cdots O$ and $N-H\cdots N$ hydrogen bonds. Received 4 January 2005 Accepted 20 January 2005 Online 22 January 2005

Comment

Phthalide is a versatile synthetic building block, particularly for the synthesis of carbocyclic and heterocyclic compounds (Bradley *et al.*, 1997). The title compound, (I), is an intermediate for the synthesis of citalopram, which is a versatile antidepressant (Liechti *et al.*, 2000). A perspective view is shown in Fig. 1.

Bond lengths and angles can be regarded as normal (Cambridge Structural Database, Version 1.6 plus three updates; *MOGUL* Version 1.0; Allen, 2002). They agree with the values determined for *o*-phthalaldehyde (Majeed *et al.*, 1998; Mendenhall *et al.*, 2003), 6-nitrophthalide (Bradley *et al.*, 1997), 3-hydroxyphthalide (Khoo & Hazell, 1999) and 5bromophthalide (Yathirajan *et al.*, 2005). All non-H atoms are coplanar (r.m.s. deviation = 0.017 Å). The crystal packing (Fig. 2) is stabilized by $N-H\cdots O$ and $N-H\cdots N$ hydrogen bonds. The NH vector of the donor group is almost perpendicular (85.8°) to the plane formed by the acceptor NH_2 group and the adjacent C atom.

Figure 1

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved Perspective view of the title compound with the atom numbering; displacement ellipsoids are shown at the 50% probability level.

Experimental

5-Aminoisoindole-1,3-dione (1 g, 6.17 mmol) was heated at 353 K with zinc dust (1 g, 15.38 mmol) in 30% NaOH solution (10 ml) for 4 h. The residue was filtered off, the filtrate was acidified with concentrated HCl (20 ml) and the mass was heated at 353 K for 2 h. It was then cooled; the pH was adjusted to neutral using liquid NH₃, and the resulting solid was filtered off and recrystallized from acetonitrile (m.p. 463–466 K).

Mo Ka radiation

reflections $\theta = 4.0-25.7^{\circ}$ $\mu = 0.11 \text{ mm}^{-1}$ T = 173 (2) KBlock, light brown $0.42 \times 0.38 \times 0.36 \text{ mm}$

 $R_{\rm int} = 0.050$

 $\theta_{\rm max} = 25.7^{\circ}$

 $h = -5 \rightarrow 5$

 $k = -10 \rightarrow 9$

 $l = -21 \rightarrow 21$

 $\Delta \rho_{\rm min} = -0.13 \text{ e} \text{ \AA}^{-3}$

Cell parameters from 12 413

676 reflections with $I > 2\sigma(I)$

Crystal data

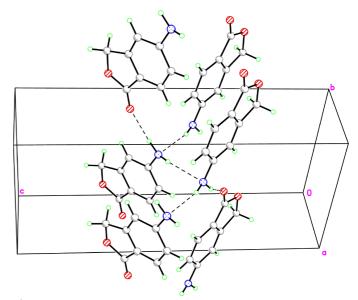
C ₈ H ₇ NO ₂
$M_r = 149.15$
Orthorhombic, $P2_12_12_1$
a = 4.6858(7) Å
b = 8.2573 (9) Å
c = 17.627 (2) Å
$V = 682.02 (15) \text{ Å}^3$
Z = 4
$D_r = 1.453 \text{ Mg m}^{-3}$

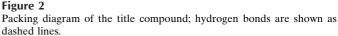
Data collection

Stoe IPDS-II two-circle diffractometer ω scans Absorption correction: none 8516 measured reflections 789 independent reflections

Refinement

Refinement on F^2	H atoms treated by a mixture of
$R[F^2 > 2\sigma(F^2)] = 0.026$	independent and constrained
$wR(F^2) = 0.067$	refinement
S = 1.04	$w = 1/[\sigma^2(F_o^2) + (0.0472P)^2]$
789 reflections	where $P = (F_o^2 + 2F_c^2)/3$
108 parameters	$(\Delta/\sigma)_{\rm max} < 0.001$
	$\Delta q = 0.12 \text{ e} \text{ Å}^{-3}$


Table 1


Hydrogen-bonding geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
N1-H1A···O1 ⁱ	0.96 (2)	2.03 (3)	2.953 (2)	161 (2)
$N1 - H1B \cdot \cdot \cdot N1^{ii}$	0.82 (2)	2.40 (3)	3.200 (2)	166 (2)

Symmetry codes: (i) x, 1 + y, z; (ii) $\frac{1}{2} + x$, $\frac{3}{2} - y$, -z.

H atoms were located in a difference map. Those bonded to carbon were positioned geometrically and refined with fixed individual displacement parameters $[U_{iso}(H) = 1.2U_{eq}(C)]$ using a riding model, with C-H = 0.99 and 0.95 Å for methylene and aromatic CH groups, respectively. H atoms bonded to nitrogen were refined isotropically. In the absence of significant anomalous scattering effects, Friedel pairs were merged.

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

BN is grateful to the University of Mysore for the provision of laboratory facilities.

References

- Allen, F. H. (2002). Acta Cryst. B58, 380-388.
- Bradley, R. F., Schwalbe, C. H., Ross, K. C., Fraser, W. & Freeman, S. (1997). Acta Cryst. C53, 1626–1628.
- Khoo, L. E. & Hazell, A. (1999). Acta Cryst. C55, 2070-2073.
- Liechti, M. E., Baumann, C., Gamma, A. & Vollenweider, F. X. (2000). Neuropsychopharmacology, 22, 513–521.

Majeed, Z., McWhinnie, W. R., Paxton, K. & Hamor, T. A. (1998). J. Chem. Soc. Dalton Trans. pp. 3947–3952.

Mendenhall, G. D., Luck, R. L., Bohn, R. K. & Castejon, H. J. (2003). J. Mol. Struct. 645, 249–258.

Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

- Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13.
- Stoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.
- Yathirajan, H. S., Nagaraj, B., Gaonkar, S., Narasegowda, R. S., Nagaraja, P. & Bolte, M. (2005). Acta Cryst. E61, 0345–0346.